My publications in peer-reviewed journals are listed below, with links to freely-available PDFs (titles) and the main journal website for each item. These are followed by my two theses, and co-authored publications (grouped by year).

Publications

  • Diffusion-dominated mixing in moderate convergence implosions (Supplemental)

    A.B. Zylstra et al, Phys. Rev. E 97, 061201(R) (2018)

  • Variable convergence liquid layer implosions on the National Ignition Facility

    A.B. Zylstra et al, Phys. Plasmas 25, 056304 (2018)

  • Proton Spectra from ³He+T and ³He+³He Fusion at Low Center-of-Mass Energy, with Potential Implications for Solar Fusion Cross Sections

    A.B. Zylstra et al, Phys. Rev. Lett. 119, 222701 (2017)

  • Simultaneous measurement of the HT and DT fusion burn histories in inertial fusion implosions

    A.B. Zylstra et al, Rev. Sci. Instrum. 88, 053504 (2017)

  • Using Inertial Fusion Implosions to Measure the T+³He Fusion Cross Section at Nucleosynthesis-Relevant Energies (Supplemental)

    A.B. Zylstra et al, Phys. Rev. Lett. 117, 035002 (2016)

  • Proton pinhole imaging on the National Ignition Facility

    A.B. Zylstra et al, Rev. Sci. Instrum. 87, 11E704 (2016)

  • Development of a WDM platform for charged-particle stopping experiments

    A.B. Zylstra et al, J. Phys. Conf. Ser. 717, 012118 (2016)

  • Measurement of Charged-Particle Stopping in Warm Dense Plasma

    A.B. Zylstra et al, Phys. Rev. Lett. 114, 215002 (2015)

  • In-flight observations of low-mode ϱR asymmetries in NIF implosions

    A.B. Zylstra et al, Phys. Plasmas 22, 056301 (2015)

  • The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    A.B. Zylstra et al, Phys. Plasmas 21, 112701 (2014)

  • A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    A.B. Zylstra et al, Rev. Sci. Instrum. 85, 063502 (2014)

  • Charged-particle spectroscopy for diagnosing shock ϱR and strength in NIF implosions

    A.B. Zylstra et al, Rev. Sci. Instrum. 83, 10D901 (2012)

  • Measurements of hohlraum-produced fast ions

    A.B. Zylstra et al, Phys. Plasmas 19, 042707 (2012)

  • Using high-intensity laser-generated energetic protons to radiograph directly driven implosions

    A.B. Zylstra et al, Rev. Sci. Instrum. 83, 013511 (2012)

  • A new model to account for track overlap in CR-39 data

    A.B. Zylstra et al, NIMA 681, 84 (2012)

  • Increasing the energy dynamic range of solid-state nuclear track detectors using multiple surfaces

    A.B. Zylstra et al, Rev. Sci. Instrum. 82, 083301 (2011)

  • 1-D Van der Waals foams heated by ion beam energy deposition

    A.B. Zylstra, J.J. Barnard, and R.M. More, High Energy Density Physics 6, 280 (2010)

  • Ion velocity distribution measurements in a magnetized laser plasma expansion

    A.B. Zylstra et al, J. Inst. 5, 06004 (2010)

  • Regime transitions in the viscous catenary

    A. Zylstra and C. Mitescu, EPL 87, 26003 (2009)

  • Theses

    Co-authored

    • Exploring the limits of case-to-capsule ratio, pulse length, and picket energy for symmetric hohlraum drive on the National Ignition Facility Laser. D.A. Callahan et al., Phys. Plasmas 25, 056305 (2018)
    • Comparison of plastic, diamond, and beryllium as candidate indirect drive NIF ablators. A.L. Kritcher et al., Phys. Plasmas 25, 056309 (2018)
    • Capsule Physics Comparison of National Ignition Facility ablators. D.S. Clark et al., Phys. Plasmas 25, 032703 (2018)
    • D$_2$ and D-T Liquid-Layer Target Shots at the National Ignition Facility. C. Walters et al., Fusion Science and Technology 73, 305 (2018)
    • Optimization of a high-yield, low-areal density fusion product source at the National Ignition Facility with applications in nucleosynthesis experiments. M. Gatu Johnson et al., Phys. Plasmas 25, 056303 (2018)
    • Dynamic High Energy Density Plasma Environments at the National Ignition Facility for Nuclear Science Research. C. Cerjan et al., J. Phys. G: Nucl. Part. Phys. 45, 0330003 (2018)
    • The Effects of Convergence Ratio on the Implosion Behavior of DT Layered Inertial Confinement Fusion Capsules. B. Haines et al., Phys. Plasmas 24, 072709 (2017)
    • Ion Kinetic Dynamics in Strongly-Shocked Plasmas Relevant to ICF. H.G. Rinderknecht et al., Nuclear Fusion 57, 066014 (2017)
    • Transition from collisional to collisionless regimes in interpenetrating plasma flows on the National Ignition Facility. J.S. Ross et al., Phys. Rev. Lett. 118, 185003 (2017)
    • Performance of beryllium targets with full-scale capsules in low-fill 6.72-mm hohlraums on the National Ignition Facility. A.N. Simakov et al., Phys. Plasmas 24, 052704 (2017)
    • Magnetic field production via the Weibel instability in interpenetrating plasma flows. C.M. Huntington et al., Phys. Plasmas 24, 041410 (2017)
    • Developing one dimensional implosions for inertial confinement fusion science. J.L. Kline et al., High Power Laser Science and Engineering 4, 44 (2016).
    • Development of an inertial confinement fusion platform to study charged-particle producing nuclear reactions relevant to nuclear astrophysics. M. Gatu Johnson et al., Phys. Plasmas 24, 041407 (2017).
    • First Liquid Layer Inertial Confinement Fusion Implosions at the National Ignition Facility. R.E. Olson et al., Phys. Rev. Lett. 117, 245001 (2016).
    • Next Generation Gamma-Ray Cherenkov Detectors for the National Ignition Facility. H.W. Herrmann et al., Rev. Sci. Instrum. 87, 11E732 (2016).
    • Scaled laboratory experiments explain the kink behavior of the Crab Nebula jet. C.K. Li et al., Nature Communications 7, 13081 (2016).
    • A Particle X-ray Temporal Diagnostic (PXTD) for studies of kinetic, multi-ion effects, and ion-electron equilibration rates in Inertial Confinement Fusion plasmas at OMEGA. H. Sio et al., Rev. Sci. Instrum. 87, 11D701 (2016).
    • A Novel Method to Recover CR-39 DD-proton Data Corrupted by Fast Ablator Ions at OMEGA and the National Ignition Facility. G.D. Sutcliffe et al., Rev. Sci. Instrum. 87, 11D812 (2016).
    • Gamma Ray Measurements at OMEGA with the newest Gas Cherenkov Detector "GCD-3". A.M. McEvoy et al., J. Phys. Conf. Ser. 717, 012109 (2016).
    • X-ray drive of beryllium capsule implosions at the National Ignition Facility. D.C. Wilson et al., J. Phys. Conf. Ser. 717, 012058 (2016).
    • Using HT and DT gamma rays to diagnose mix in Omega capsule implosions. M.J. Schmitt et al., J. Phys. Conf. Ser. 717, 012048 (2016).
    • Wetted foam liquid fuel ICF target experiments. R.E. Olson et al., J. Phys. Conf. Ser. 717, 012042 (2016).
    • Kinetic studies of ICF implosions. G. Kagan et al., J. Phys. Conf. Ser. 717,012027 (2016).
    • Polar-direct-drive experiments at the National Ignition Facility. P.B. Radha et al., J. Phys. Conf. Ser. 717, 012009 (2016).
    • The Near Vacuum Hohlraum Campaign at the NIF: A New Approach. S. Le Pape et al., Phys. Plasmas 23, 056311 (2016).
    • Symmetry Control in Subscale Near-Vacuum Hohlraums. D. Turnbull et al., Phys. Plasmas 23, 052710 (2016).
    • First beryllium capsule implosions on the National Ignition Facility. J. Kline et al., Phys. Plasmas 23, 056310 (2016).
    • Direct Drive: Simulations and Results from the National Ignition Facility. P.B. Radha et al., Phys. Plasmas 23, 056305 (2016).
    • Understanding the stagnation and burn of implosions on NIF. J.D. Kilkenny et al., J. Phys. Conf. Series 688, 012048 (2016).
    • Laboratory astrophysical collision less shock experiments on Omega and NIF. H.S. Park et al., J. Phys. Conf. Series 688, 012084 (2016).
    • A direct-drive exploding-pusher implosion as the first step in development of a monoenergetic charged-particle backlighting platform at the National Ignition Facility. M. Rosenberg et al., HEDP 18, 38 (2016).
    • Polar-Direct-Drive Experiments with Contoured-Shell Targets on OMEGA. F.J. Marshall et al., Phys. Plasmas 23, 012711 (2016).
    • The NIF Diagnostic Set at the Completion of the National Ignition Campaign September 2012. J.D. Kilkenny et al., Fusion Science and Technology 69 (2016).
    • Impact of x-ray dose on track formation and data analysis for CR-39-based proton diagnostics. H.G. Rinderknecht et al., Rev. Sci. Instrum. 86, 123511 (2015).
    • Note: A monoenergetic proton backlighter for the National Ignition Facility. J.R. Rygg et al., Rev. Sci. Instrum. 86, 116104 (2015).
    • Measurements of Ion Stopping around the Bragg Peak In High-Energy-Density Plasmas. J.A. Frenje et al., Phys. Rev. Lett. 115, 205001 (2015).
    • Self-similar structure and experimental signatures of suprathermal ion distribution in ICF implosion. G. Kagan et al., Phys. Rev. Lett. 115, 105002 (2015).
    • Using multiple secondary fusion products to evaluate fuel $\rho$R, electron temperature, and mix in deuterium-filled implosions at the NIF. H.G. Rinderknecht et al., Phys. Plasmas 22, 082709 (2015).
    • Assessment of Ion Kinetic Effects in Shock-Driven Inertial Confinement Fusion (ICF) Implosions Using Fusion Burn Imaging. M. Rosenberg et al., Phys. Plasmas 22, 062702 (2015).
    • A method for in situ absolute yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors. C.J. Waugh et al., Rev. Sci. Instrum. 86, 053506 (2015).
    • Slowing of Magnetic Reconnection Concurrent with Weakening Plasma Inflows and Increasing Collisionality in Strongly-Driven Laser-Plasma Experiments, M.J. Rosenberg et al., Phys. Rev. Lett. 114, 205004 (2015).
    • Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions. N.M. Hoffmann et al., Phys. Plasmas 22, 052707 (2015).
    • Collisionless shock experiments with lasers and observation of Weibel instabilities, H.-S. Park et al., Phys. Plasmas 22, 056311 (2015).
    • Impact of x-ray dose on the response of CR-39 to $1-5.5$ MeV alphas, J. Rojas-Herrera et al., Rev. Sci. Instrum. 86, 033501 (2015).
    • Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows. C.M. Huntington et al., Nature Physics (2015).
    • Ion Thermal Decoupling and Species Separation in Shock-Driven Implosions. H.G. Rinderknecht et al., Phys. Rev. Lett. 114, 025001 (2015).
    • Investigation of Ion Kinetic Effects in Direct-Drive Exploding-Pusher Implosions at the NIF. M.J. Rosenberg et al., Phys. Plasmas 21, 122712 (2014).
    • Simulations of indirectly driven gas-filled capsules at the National Ignition Facility. S.V. Weber et al., Phys. Plasmas 21, 112706 (2014).
    • A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and ρR are determined in thin-shell inertial-confinement-fusion implosions. M.J. Rosenberg et al., Rev. Sci. Instrum. 85, 103504 (2014).
    • Extended performance gas Cherenkov detector for gamma-ray detection in high-energy density experiments. H.W. Herrmann et al., Rev. Sci. Instrum. 85, 11E124 (2014).
    • A technique for extending by ∼ 10³ the dynamic range of compact proton spectrometers for diagnosing ICF implosions on the National Ignition Facility and OMEGA. H. Sio et al., Rev. Sci. Instrum. 85, 11E119 (2014).
    • A Magnetic Particle Time-of-Flight (MagPTOF) diagnostic for measurements of shock- and compression-bang time at the NIF. H.G. Rinderknecht et al., Rev. Sci. Instrum. 81, 11D901 (2014).
    • Self-generated magnetic fields in direct-drive implosion experiments. I.V. Igumenshchev et al., Phys. Plasmas 21, 062707 (2014).
    • Direct observation of a rebounding central shock in an indirectly-driven spherical implosion on the NIF. S. Le Pape et al., Phys. Rev. Lett. 112, 225002 (2014).
    • High-Density Carbon Ablator Experiments on the National Ignition Facility. A.J. Mackinnon et al., Phys. Plasmas 21, 056318 (2014).
    • Kinetic mix mechanisms in shock-driven inertial confinement fusion implosions. H.G. Rinderknecht et al., Phys. Plasmas 21, 056311 (2014).
    • Species Separation and Kinetic Effects in Collisional Plasma Shocks. C. Bellei et al., Phys. Plasmas 21, 056310 (2014).
    • Exploration of the Transition from the Hydrodynamiclike to the Strongly Kinetic Regime in Shock-Driven Implosions. M.J. Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014).
    • Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications. M.J. Rosenberg et al., Rev. Sci. Instrum. 85, 043302 (2014).
    • First observations of non-hydrodynamic mix at the fuel-shell interface in shock-driven inertial confinement implosions. H.G. Rinderknecht et al., Phys. Rev. Lett. 112, 135001 (2014).
    • Review of the National Ignition Campaign 2009-2012. J. Lindl et al., Phys. Plasmas 21, 020501 (2014).
    • Design calculations for NIF convergent ablator experiments. R.E. Olson et al., EPJ Web of Conferences 59, 02008 (2013).
    • Progress towards ignition at the National Ignition Facility. D.E. Hinkel et al., Plasma Phys. Control. Fusion 55, 124015 (2013).
    • Structure and dynamics of colliding plasma jets. C.K. Li et al., Phys. Rev. Lett. 111, 235003 (2013).
    • Progress towards ignition on the National Ignition Facility. M.J. Edwards et al., Phys. Plasmas 20, 070501 (2013).
    • Proton imaging of hohlraum plasma stagnation in inertial-confinement-fusion experiments. C.K. Li et al., Nuclear Fusion 53, 073022 (2013).
    • Nuclear imaging of the fuel assembly in ignition experiments. G.P. Grim et al., Phys. Plasmas 20, 056320 (2013).
    • Observation of strong electromagnetic fields around laser-entrance holes of ignition-scale hohlraums in ICF experiments at the NIF. C.K. Li et al., New J. Phys. 15, 025040 (2013).
    • T-T Neutron Spectrum from Inertial Confinement Implosions. A.D. Bacher et al., Few-Body Systems 54, 1599 (2013).
    • Dynamics of exploding plasmas in a large magnetized plasma. C. Niemann et al., Phys. Plasmas 20, 012108 (2013).
    • A multithreaded modular software toolkit for control of complex experiments. N. Sinenian et al., Computing in Science and Engineering 15, 66 (2013).
    • Implosion dynamics measurements at the National Ignition Facility. D.G. Hicks et al., Phys. Plasmas 19, 122702 (2012).
    • Progress in the indirect-drive National Ignition Campaign. O. L. Landen et al., Plasma Phys. Control. Fusion 54, 124026 (2012).
    • Total energy loss to fast ablator-ions and target capacitance of direct-drive implosions on OMEGA. N. Sinenian et al., Appl. Phys. Lett. 101, 114102 (2012).
    • Advances in compact proton spectrometers for inertial-confinement fusion and plasma nuclear science. F. H. Séguin et al., Rev. Sci. Instrum. 83, 10D908 (2012).
    • Determination of deuterium-tritium branching ratio based on inertial confinement fusion implosions. Y. Kim et al., Phys. Rev. C 85, 061601 (2012).
    • Source characterization and modeling development for monoenergetic-proton radiography experiments at OMEGA. M. J.-E. Manuel et al., Rev. Sci. Instrum. 83, 063506 (2012).
    • Measurements of the absolute T(t,2n)4He neutron spectrum at low reactant energies from inertial confinement fusion implosions. D.T. Casey et al., Phys. Rev. Lett. 109, 025003 (2012).
    • A novel particle Time of Flight (pTOF) diagnostic for measurements of shock- and compression-bang times in D3He and DT implosions at the NIF. H.G. Rinderknecht et al., Rev. Sci. Instrum. 83, 10D902 (2012).
    • Assembly of High-Areal-Density Deuterium-Tritium Fuel from Indirectly Driven Cryogenic Implosions. A. J. Mackinnon et al., Phys. Rev. Lett. 108, 215005 (2012)
    • Mapping Return Currents in Laser-generated Z-pinch Plasmas using Proton Deflectometry. M. J.-E. Manuel et al., Appl. Phys. Lett. 100, 203505 (2012).
    • D-T gamma-to-neutron branching ratio determined from inertial confinement fusion plasmas. Y.H. Kim et al., Phys. Plasmas 19, 056313 (2012).
    • Upgrade of the MIT Linear Electrostatic Ion Accelerator (LEIA) for nuclear diagnostics development for OMEGA, Z, and the NIF. N. Sinenian et al., Rev. Sci. Instrum. 83, 043502 (2012).
    • Impeding hohlraum plasma stagnation in inertial-confinement fusion. C. K. Li et al., Phys. Rev. Lett. 108, 025001 (2012).
    • The response of CR-39 nuclear track detector to 1-9 MeV protons. N. Sinenian et al., Rev. Sci. Instrum. 82 (2011).
    • Changes in CR-39 proton sensitivity due to prolonged exposure to high vacuums relevant to the National Ignition Facility and OMEGA. M. J.-E. Manuel et al., Rev. Sci. Instrum. 82 (2011).
    • Diagnosing indirect-drive inertial-confinement-fusion implosions with charged particles. C. K. Li et al., Plasma Phys. Control. Fusion 52 (2010).
    • Simulations for experimental study of warm dense matter and inertial fusion energy applications on NDCX-II. J. J. Barnard et al., J. Phys.: Conf. Ser. 244 (2010).
    • Design, construction, and calibration of a three-axis, high-frequency magnetic probe as a diagnostic for exploding plasmas. E. Everson et al., Rev. Sci. Instrum. 80 (2009)
    • Ion Beam Heated Target Simulations for Warm Dense Matter Physics and Inertial Fusion Energy. J. J. Barnard et al., NIMA 606 (2009).